鳃的功能组学研究进展和趋势
2025-08-19 17:55:12 世界杯女排决赛Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 2005, 85(1): 97-177. doi: 10.1152/physrev.00050.2003
Nunes B, Antunes S C, Gomes R, et al. Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations[J]. Archives of Environmental Contamination and Toxicology, 2015, 68(2): 371-381. doi: 10.1007/s00244-014-0101-z
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1): 57-63. doi: 10.1038/nrg2484
Miao L H, Lin Y, Pan W J, et al. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity[J]. Fish & Shellfish Immunology, 2018, 79: 244-255.
Rodrigues P M, Silva T S, Dias J, et al. PROTEOMICS in aquaculture: applications and trends[J]. Journal of Proteomics, 2012, 75(14): 4325-4345. doi: 10.1016/j.jprot.2012.03.042
Lee A R, Kim H, Jeon K Y, et al. Differential proteome profile of gill and spleen in three pathogen-infected Paralichthys olivaceus[J]. Genes & Genomics, 2021, 43(7): 701-712.
Alseekh S, Fernie A R. Metabolomics 20 years on: what have we learned and what hurdles remain?[J]. The Plant Journal, 2018, 94(6): 933-942. doi: 10.1111/tpj.13950
Xu H D, Wang J S, Li M H, et al. 1H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus)[J]. Aquatic Toxicology, 2015, 159: 69-80. doi: 10.1016/j.aquatox.2014.11.020
West A C, Mizoro Y, Wood S H, et al. Immunologic profiling of the Atlantic salmon gill by single nuclei transcriptomics[J]. Frontiers in Immunology, 2021, 12: 669889. doi: 10.3389/fimmu.2021.669889
Gao J, Xu G C, Xu P. Gills full-length transcriptomic analysis of osmoregulatory adaptive responses to salinity stress in Coilia nasus[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112848. doi: 10.1016/j.ecoenv.2021.112848
Liang P P, Saqib H S A, Lin Z Y, et al. RNA-seq analyses of marine medaka (Oryzias melastigma) reveals salinity responsive transcriptomes in the gills and livers[J]. Aquatic Toxicology, 2021, 240: 105970. doi: 10.1016/j.aquatox.2021.105970
Chen X X, Gong H, Chi H S, et al. Gill transcriptome analysis revealed the difference in gene expression between freshwater and seawater acclimated guppy (Poecilia reticulata)[J]. Marine Biotechnology, 2021, 23(4): 615-627. doi: 10.1007/s10126-021-10053-4
Su H H, Ma D M, Zhu H P, et al. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female × O. urolepis hornorum male)[J]. BMC Genomics, 2020, 21(1): 110. doi: 10.1186/s12864-020-6512-5
Lam S H, Lui E Y, Li Z J, et al. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus[J]. BMC Genomics, 2014, 15(1): 921. doi: 10.1186/1471-2164-15-921
Johansson L H, Timmerhaus G, Afanasyev S, et al. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome[J]. Fish & Shellfish Immunology, 2016, 58: 33-41.
Gu J, Dai S Y, Liu H T, et al. Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes[J]. Fish & Shellfish Immunology, 2018, 73: 288-296.
Vij S, Purushothaman K, Sridatta P S R, et al. Transcriptomic analysis of gill and kidney from Asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity[J]. Genes, 2020, 11(7): 733. doi: 10.3390/genes11070733
Houde A L S, Schulze A D, Kaukinen K H, et al. Transcriptional shifts during juvenile Coho salmon (Oncorhynchus kisutch) life stage changes in freshwater and early marine environments[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2019, 29: 32-42. doi: 10.1016/j.cbd.2018.10.002
Bowen L, von Biela V R, McCormick S D, et al. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon (Oncorhynchus tshawytscha)[J]. Conservation Physiology, 2020, 8(1): coaa084. doi: 10.1093/conphys/coaa084
Guo L, Wang Y M, Liang S J, et al. Tissue-overlapping response of half-smooth tongue sole (Cynoglossus semilaevis) to thermostressing based on transcriptome profiles[J]. Gene, 2016, 586(1): 97-104. doi: 10.1016/j.gene.2016.04.020
Nitzan T, Kokou F, Doron-Faigenboim A, et al. Transcriptome analysis reveals common and differential response to low temperature exposure between tolerant and sensitive blue tilapia (Oreochromis aureus)[J]. Frontiers in Genetics, 2019, 10: 100. doi: 10.3389/fgene.2019.00100
Chen G, Pang M X, Yu X M, et al. Transcriptome sequencing provides insights into the mechanism of hypoxia adaption in bighead carp (Hypophthalmichthys nobilis)[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2021, 40: 100891. doi: 10.1016/j.cbd.2021.100891
Mu Y N, Li W R, Wei Z Y, et al. Transcriptome analysis reveals molecular strategies in gills and heart of large yellow croaker (Larimichthys crocea) under hypoxia stress[J]. Fish & Shellfish Immunology, 2020, 104: 304-313.
Saetan W, Tian C X, Yu J W, et al. Comparative transcriptome analysis of gill tissue in response to hypoxia in silver sillago (Sillago sihama)[J]. Animals, 2020, 10(4): 628. doi: 10.3390/ani10040628
Luo B Y, Qian H L, Jiang H C, et al. Transcriptional changes revealed water acidification leads to the immune response and ovary maturation delay in the Chinese mitten crab Eriocheir sinensis[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2021, 39: 100868. doi: 10.1016/j.cbd.2021.100868
Li H M, Meng Q L, Chen T, et al. Transcriptomic response to low pH stress in gills of the Pacific white shrimp, Litopenaeus vannamei[J]. Aquaculture Research, 2020, 51(1): 175-186. doi: 10.1111/are.14362
Huang W, Li H M, Cheng C H, et al. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress[J]. PLoS One, 2018, 13(12): e0207771. doi: 10.1371/journal.pone.0207771
You X X, Chen J M, Bian C, et al. Transcriptomic evidence of adaptive tolerance to high environmental ammonia in mudskippers[J]. Genomics, 2018, 110(6): 404-413. doi: 10.1016/j.ygeno.2018.09.001
Zhang Y, Chen C F, Shen W L, et al. Comparative transcriptome analysis reveals the biological mechanism of selective cadmium enrichment in Tegillarca granosa[J]. Aquaculture Reports, 2021, 21: 100960. doi: 10.1016/j.aqrep.2021.100960
Tang D, Liu R B, Shi X L, et al. Toxic effects of metal copper stress on immunity, metabolism and pathologic changes in Chinese mitten crab (Eriocheir japonica sinensis)[J]. Ecotoxicology, 2021, 30(4): 632-642. doi: 10.1007/s10646-021-02367-9
Tang D, Shi X L, Guo H Y, et al. Comparative transcriptome analysis of the gills of Procambarus clarkii provides novel insights into the immune-related mechanism of copper stress tolerance[J]. Fish & Shellfish Immunology, 2020, 96: 32-40.
Cheng J X, Xia Y Q, Liu Y F, et al. Transcriptome analysis in Takifugu rubripes and Dicentrarchus labrax gills during Cryptocaryon irritans infection[J]. Journal of Fish Diseases, 2021, 44(3): 249-262. doi: 10.1111/jfd.13318
Gjessing M C, Krasnov A, Timmerhaus G, et al. The atlantic salmon gill transcriptome response in a natural outbreak of salmon gill pox virus infection reveals new biomarkers of gill pathology and suppression of mucosal defense[J]. Frontiers in Immunology, 2020, 11: 2154. doi: 10.3389/fimmu.2020.02154
Chen L H, Lin S W, Liu K F, et al. Comparative proteomic analysis of Litopenaeus vannamei gills after vaccination with two WSSV structural proteins[J]. Fish & Shellfish Immunology, 2016, 49: 306-314.
Lü A J, Hu X C, Wang Y, et al. iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila[J]. Fish & Shellfish Immunology, 2014, 36(1): 229-239.
Root L, Campo A, Macniven L, et al. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover[J]. Genomics, 2021, 113(5): 3235-3249. doi: 10.1016/j.ygeno.2021.07.016
Lai K P, Li J W, Gu J, et al. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel[J]. BMC Genomics, 2015, 16: 1072. doi: 10.1186/s12864-015-2271-0
San L Z, Liu B S, Liu B, et al. Transcriptome analysis of gills provides insights into translation changes under hypoxic stress and reoxygenation in golden pompano, Trachinotus ovatus (Linnaeus 1758)[J]. Frontiers in Marine Science, 2021, 8: 763622. doi: 10.3389/fmars.2021.763622
Jie Y K, Cheng C H, Wang L C, et al. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain)[J]. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 2021, 245: 109039.
Zhao Y, Zhang C S, Zhou H T, et al. Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2020, 33: 100651. doi: 10.1016/j.cbd.2019.100651
Ali M Y, Pavasovic A, Mather P B, et al. Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus[J]. Gene, 2015, 564(2): 176-187. doi: 10.1016/j.gene.2015.03.074
Sun G G, Sun C S, He J, et al. Characterizing the role of Glutamine synthetase gene on ammonia nitrogen detoxification metabolism of the razor clam Sinonovacula constricta[J]. Frontiers in Marine Science, 2021, 8: 793118. doi: 10.3389/fmars.2021.793118
Shang Z H, Huang M, Wu M X, et al. Transcriptomic analyses of the acute aerial and ammonia stress response in the gill and liver of large-scale loach (Paramisgurnus dabryanus)[J]. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 2021, 250: 109185.
Shen C C, Tang D, Bai Y Z, et al. Comparative transcriptome analysis of the gills of Procambarus clarkii provide novel insights into the response mechanism of ammonia stress tolerance[J]. Molecular Biology Reports, 2021, 48(3): 2611-2618. doi: 10.1007/s11033-021-06315-y
Xiao J, Luo S S, Du J H, et al. Transcriptomic analysis of gills in nitrite-tolerant and -sensitive families of Litopenaeus vannamei[J]. Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 2022, 253: 109212.
Wang Z H, Shao Y N, Li C H, et al. RNA-seq analysis revealed ROS-mediated related genes involved in cadmium detoxification in the razor clam Sinonovacula constricta[J]. Fish & Shellfish Immunology, 2016, 57: 350-361.
Li Z, Liu X M, Cheng J, et al. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (Paralichthys olivaceus) challenged with Edwardsiella tarda[J]. Fish & Shellfish Immunology, 2018, 72: 593-603.
Wu R H, Sheng X Z, Tang X Q, et al. Transcriptome analysis of flounder (Paralichthys olivaceus) gill in response to lymphocystis disease virus (LCDV) infection: novel insights into fish defense mechanisms[J]. International Journal of Molecular Sciences, 2018, 19(1): 160. doi: 10.3390/ijms19010160
Sun J L, Jiang T, Gu Y, et al. Differential immune and metabolic responses underlie differences in the resistance of Siganus oramin and Trachinotus blochii to Cryptocaryon irritans infection[J]. Fish & Shellfish Immunology, 2022, 120: 166-179.
Xu Z N, Zheng G D, Wu C B, et al. Identification of proteins differentially expressed in the gills of grass carp (Ctenopharyngodon idella) after hypoxic stress by two-dimensional gel electrophoresis analysis[J]. Fish Physiology and Biochemistry, 2019, 45(2): 743-752. doi: 10.1007/s10695-018-0599-5
Tse W K F, Sun J, Zhang H M, et al. iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica)[J]. Journal of Proteomics, 2014, 105: 133-143. doi: 10.1016/j.jprot.2014.01.025
Lu X J, Chen J, Huang Z A, et al. Proteomic analysis on the alteration of protein expression in gills of ayu (Plecoglossus altivelis) associated with salinity change[J]. Comparative Biochemistry and Physiology-Part D: Genomics and Proteomics, 2010, 5(3): 185-189. doi: 10.1016/j.cbd.2010.03.002
Saco A, Panebianco A, Blanco S, et al. Integration of transcriptomics and proteomics improves the characterization of the role of mussel gills in a bacterial waterborne infection[J]. Frontiers in Marine Science, 2021, 8: 735309. doi: 10.3389/fmars.2021.735309
Valentim-Neto P A, Fraga A P M, Marques M R F. Differential expression of proteins in the gills of Litopenaeus vannamei infected with white spot syndrome virus[J]. Aquaculture International, 2014, 22(5): 1605-1620. doi: 10.1007/s10499-014-9768-4
Liu G, Li H J, Zhang X Z, et al. Research on toxicity mechanism of inorganic arsenic on Portunus trituberculatus gill tissue revealed by metabonomics[J]. Journal of Fishery Sciences of China, 2021, 28(5): 602-613 (in Chinese).
Wu H F, Xu L L, Yu D L, et al. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium[J]. Ecotoxicology, 2017, 26(1): 74-80. doi: 10.1007/s10646-016-1741-8
Ye Y F, Xia M J, Mu C K, et al. Acute metabolic response of Portunus trituberculatus to Vibrio alginolyticus infection[J]. Aquaculture, 2016, 463: 201-208. doi: 10.1016/j.aquaculture.2016.05.041